Tetrahedron Letters No.20, pp. 1937-1939, 1967. Pergamon Press Ltd. Printed in Great Britain.

Comments on the paper

PHOTOCHEMICAL CYCLOADDITION OF BENZOPHENONE TO FURANS¹

J. Leitich

Max-Planck-Institut für Kohlenforschung, Abteilung Strahlenchemie, Mülheim-Ruhr

(Received 13 March 1967)

Ogata, Watanabe and Kano recently reported¹ benzophenone to give two isomeric 2:1 photoadducts with furan (IIa + IIIa), 2-methylfuran (IIb + IIIb) and one with 2.5-dimethylfuran (IIc). IIc on mild acid treatment changed into another isomer, VIII. They assigned structure A to compounds of series II, B to those of series III and C_c to VIII.

On the basis of the data given by the authors we should prefer to assign structure C rather than A to series II for the following reasons:

1) The n.m.r.-spectrum of IIa is reported to show two doublets ($\tau = 4.06$ and 6.30) with J = 4 cps. For an A_2B_2 -system (as is exhibited by both A_a and C_a), such a type of spectrum will only be expected if the coupling between the two equivalent "upper" protons at the 3- and 4'-positions of the tetrahydro-furan ring is very small, 3 cps at most if the doublet is very "unclean", much less if it is sharp. Such a small coupling is exactly what is to be expected

for C_a where the dihedral angle between the two protons is close to 90° , (this is born out by the fact that in IIIa (= B_a) the analogous coupling is also close to 0), whereas for A one should expect couplings of 7-8 cps, considering the present experience with five-membered rings and even taking into account strong distortion of the molecule.

2) Structure A when constructed as Dreiding model (using the newly supplied oxetane rings) exhibits absolutely prohibitive non-bonding interactions. In the state of least angle strain, two phenyl rings inevitably penetrate each other completely. This can be avoided by distorting the assembly but even then severe non-bonding interactions will remain. C, on the contrary, is free of such strain.

3) The authors' assignment rests on the dipole moments; they calculated 3.70 D for A_a which fits excellently with their experimental value for IIa, 3.74 D. However, using their parameters we calculated 3.33 D for structure C_a , which also fits IIa perfectly within the limits of accuracy inherent in the method; the precise agreement found by the authors is fortuitous anyway.

Since structure C_c is now no longer available for VIII, we propose a different structure, D, of the same symmetry (C_2) for this compound which fits all its properties:

1) Formation from IIc = C_c under acidic conditions is to be expected. (D is less strained than C_c .)

2) Dreiding models show that the plane of one phenyl ring in D should lie right above one methyl group, resulting in a high field shift of the latter. This fits nicely with the abnormally high value, $\tau = 9.15$, found for the latter.

3) Although we could not precisely calculate the dipole moment to be expected for D it was estimated to lie somewhere between 2.36 and 2.67 D. Agree-

1938

ment of the experimental value, 2.00 D, with this estimate is not too good, but still better than with the value to be expected for C_c , which should be greater than 2.76 D (3.33 D minus allowance for two methyl groups).

These reassignments eliminate the question why the symmetric 2:1 adduct should have formed exclusively in the syn-form A and the asymmetric adduct exclusively in the anti-form B. Rather both products are formed in the antiforms B and C.

Reference

1 M. Ogata, H. Watanabe and H. Kano, <u>Tetrahedron Letters</u> <u>1967</u>, 533